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PACSAN Interactive Model: background and assumptions

Institute for Sustainable Futures, University of Technology Sydney

1 Model Description

The PACSAN model is structured around two integrated sub-models, each addressing critical
aspects of sustainability in food systems:

e The first sub-model, the Greenhouse Gas (GHG) emissions model, evaluates GHG
emissions across various stages of the food chain, such as fertilizer manufacturing,
livestock production, and food waste.

e The second sub-model, the Phosphorus (P) model, focuses on the supply-risk of
phosphorus from a food security perspective and explores alternative demand solutions,
targeting sectors like agriculture, aquaculture, and livestock. Additionally, it considers
innovative supply strategies, such as phosphorus recovery from food waste and manure.

Both sub-models are focused on assessing the potential impact of eight measures which
represent interventions, as described in the following table:

Table 1: Measures applied across the model

1. Renewable fertilizer e Ammonia produced with renewable hydrogen

Recovery and recycling of phosphorus from manures,
crop waste and sewage
- Nutrient productivity e  On farm efficiency of fertilizer
e  Smart agriculture
e Tapping legacy phosphorus, soil testing and mapping

N

3. Soil carbon sequestration e Lock-up carbon in soils

4. Crop type ¢ Rice varieties to reduce greenhouse emissions
Crop varieties that maximise nutrient use efficiency

5. Livestock feed additives o Feed additives for ruminants to reduce methanogenesis
Phytase additives to maximise phosphorus uptake

6. Energy productivity e Improving energy productivity along the food chain,

e Electrification incl mobility, food processing
increased renewables in the grid

. Sustainable food choices e  Shifting food consumption from livestock to plant-based
8. Food waste avoidance e Reducing avoidable food waste across the food chain

~

Each measure is assigned an impact coefficient, ranging from 0 to 1, which reflects its potential
impact on specific categories of emissions or phosphorus use or sectors within the model. The
impact coefficient is an estimate of the extent to which a particular measure can affect its
corresponding stages or sectors of the food chain (for the GHG sub-model) and phosphorus-
demanding sectors (for the P sub-model). For instance, an impact coefficient of 1 signifies that
the measure could achieve its full potential impact, while lower values suggest reduced influence.
The simultaneous application of these measures across both the GHG and P models allows for
a holistic assessment of sustainability interventions across the food supply chain. These impact
coefficients are equivalent to elasticity coefficients between two variables. For example,
converting all nitrogen fertilizer production to renewable ammonia and renewably sourced
electricity would impact on the emissions from the fertilizer manufacturing sector with an impact
coefficient of 1.0, but for all other sectors it would be 0. Reducing livestock numbers in Australia
would have an impact factor on crop production of less than 1 because only about 40% of crop
production in Australia supplies livestock feed.
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2 Greenhouse Gas Emissions Sub-
model

The greenhouse gas (GHG) emissions model relied on several key data sources. For its baseline,
the data was collected from the Food and Agriculture Organization of the United Nations
(FAOSTAT) Agrifood System Emissions (FAOSTAT, 2024). Relevant FAO reports and
publications offered detailed methodologies and guidelines on how these emissions have been
estimated. The data used ranged from 1961 to 2021 for historical insights, with forecasts
extending to 2030 and 2050 where available. In cases where FAO forecasts were unavailable,
extrapolation techniques such as Exponential Smoothing (ETS) and logistic functions were
applied to project emissions up to 2050. To enable a more granular analysis, some FAO
categories were presented with disaggregated emissions (e.g. rice cultivation from crop
production), allowing for a detailed assessment of the sources and processes contributing to GHG
emissions across the food supply chain.

Moreover, data for the Land Use Change in Australia has been collected from the DCCEW —
Australia's emissions projections 2023 (Australian Government, 2023). This category includes
emissions from “Agricultural and other land” and “Forest conversion to agriculture and other land”.
It does not consider carbon sequestration from forests.

The detailed FAOSTAT datapoints used, how they’ve been labelled in the PACSAN model, the
available FAOSTAT projections, and the forecasting techniques used (when applicable) are
presented in Figure 1 and Figure 2 for Australia and China, respectively.

Institute for Sustainable Futures, University of Technology Sydney



PACSAN Interactive Model: background and assumptions

Figure 1: Data structure, data sources, disaggregation levels, FAO projections and forecasting
function used for the Australian GHG model
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Figure 2: Data structure, data sources, disaggregation levels, FAO projections and forecasting
function used for the Chinese GHG model
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2.1 Emission categories

The FAOSTAT data provides comprehensive estimates of GHG emissions across various stages
of agrifood systems. This includes emissions generated within the farm gate, emissions related
to land use changes, as well as those associated with pre- and post-production food processes
(FAOSTAT, 2023). Table 2 offers an overview of these processes, categorized according to FAO

classifications.

Table 2: Categories covered under the FAO Emissions dataset and Land use change description

based on DCCEEW.

FAO Category Description

Fertilizer manufacturing Critical input in crop production with significant energy use in
ammonia production via the Haber-Bosch process. Emissions
primarily from energy-intensive manufacturing processes.

Pesticide manufacturing Energy consumption and emissions associated with producing
pesticides.

Drainage of agricultural Greenhouse Gas (GHG) Emissions from Drained Organic Soils

soils consist of the N20 and CO2 losses to the atmosphere due to the

oxidation of the organic matter when organic soils are drained for
agricultural activities

Land use change This category includes emissions from “Agricultural and other
land” and “Forest conversion to agriculture and other land” from
the DCCEEW Emissions forecast. It does not consider carbon
sequestration from forests.

Crop production Rice Cultivation: Methane emissions from anaerobic
decomposition in paddy fields.

Crop Residues: N,O emissions from decomposing residues.

Crop Burning: CH, and N,O emissions from burning agricultural
residues.

Livestock production Enteric Fermentation: Methane emissions from digestion in
ruminants.

Manure Management: Emissions from manure handling and
storage.

Fertilizer use Direct and indirect N,O emissions from nitrogen applied to soils.

Energy use in agriculture ~ Emissions from the use of machinery, irrigation, and other energy-
consuming agricultural activities.

Food processing Energy use and emissions from transforming raw agricultural
commodities into consumable food products.

Food packaging Emissions linked to producing packaging materials like glass,
plastic, aluminium, and paper.

Food transport Emissions from transporting food products across various stages
of the supply chain.

Food retail Energy consumption and emissions from retail operations,
including refrigeration and lighting.

Food consumption Household emissions from cooking, refrigeration, and food
preparation.

Food waste Methane emissions from anaerobic decomposition of organic

waste in landfills.

Wastewater Domestic Wastewater: Emissions from wastewater generated by
households.

Industrial Wastewater: Emissions from wastewater generated in
food-related industrial processes.
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2.2

GHG cumulative emissions business-as-usual forecast

The cumulative emissions, in kilotons of carbon dioxide equivalent (kt of CO2-eq), from 2025 to
2050 are presented in Figure 3 for Australia, and Figure 4 for China.

The aggregation / disaggregation between countries might be slightly different, in accordance
with the data structure presented in Figure 1 and Figure 2.

Figure 3: Australia: Cumulative kt of CO2-eq from 2025 to 2050, per model category
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Figure 4: China: Cumulative kT of CO2-eq from 2025 to 2050, per model category
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The following figures showcase the combinations of measures and sectors, highlighting the
impact coefficient values applied to these combinations, which quantify the potential impact of
each measure on its respective model sector.

Institute for Sustainable Futures, University of Technology Sydney
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This indicates the strength of the relationship of a measure applied to different sectors in the food
value chain.

Figure 5: Impact coefficients applied to the Australian GHG model

Code A B c D E QR G H i ) K N M N o

Sector ;emmr :eswde ::‘age . t:g:g'fe grgucmn Livestock  |Fertilizer use ;“:;ﬁfje Food Food t:zpo 4 |Food retai z:::umpllon Food waste |Wastewater
1. Renewable fertliser

2. Nutrient productivity 0.80 0.10 0.10 0.10 0.10
3. Soil carbon 0.10 0.10 0.05 0.20

4. Crop type 0.10 0.10 0.10 0.10

5. Livestock feed additives 0.80

6. Energy productivity 0.10 0.50

7. Sustainable food choices 0.10 0.10 0.10 0.50 0.30 0.50 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
8. Food waste avoidance 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.50 0.50 0.50

Figure 6: Impact coefficients applied to the Chinese GHG model

Code A B D P E F G H | J K L M N 0

Soctor :e"”'”' :es"“de Landuse fRce | forp LSOOk gy g 0y ume (Fond Rt 008 e (7009 st wasenatr
1. Renewable fertiliser

2. Nutrient productivity 0.80 0.10 - 0.10 0.10 - - - - - - 0.10
3. Soil carbon

4. Crop type 0.10 0.10 5 0.10 0.10 0.10

5. Livestock feed additives - - - - - 0.80

6. Energy productivity 0.10 050

7. Sustainable food choices 0.10 0.10 - 0.50 0.30 0.50 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
8. Food waste awidance 0.10 0.10 - 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.50 0.50 0.50

Universal assumptions:
e Fisheries and aquaculture were excluded from the model

Table 3: Assumptions and references for GHG model

Assumptions

(impact coefficients) Refarences

Measure Description

TS o © Ammonia produced with Nitrogenous fertilizer could, in Butler and Denis-

fertilizer renewable hydrogen principle, be fully derived from Ryan (2024)
green hydrogen or from nitrogen Wang, et al (2022)
fixing crops

e This measure impacts solely on the
Fertilizer manufacturing sector

e  Fossil fuel use in mining and
processing of phosphorus fertilizer
can be electrified (diesel and gas)
and provided by renewable
sources

2. Nutrient e On farm efficiency of Improved efficiency of application Karatay and Meyer-
productivity fertilizer of nitrogenous fertilizers will have Aurich, (2018)

the greatest impact on N20O

emissions from Fertilizer use, as

well as Crop production, and also

from Fertilizer manufacturing, due

to reduced demand for fertilizer

e Smart agriculture

e Impact coefficients for other
primary production categories will
be much lower

Institute for Sustainable Futures, University of Technology Sydney
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Measure Description

Yoy e TdoTe sl @ Lock-up carbon in soils
sequestration

¢ Rice varieties to reduce
methane emissions

4. Crop type

5. Livestock ¢ Feed additives to reduce
feed methanogenesis

additives

e Improving energy
productivity along the food
chain

6. Energy
productivity
across food
value chain e Electrification including
mobility, food processing
increased renewables in

the electricity supply

7. « Shifting food consumption
Sustainable from livestock to plant-

food choices based

e R e W ° Reducing avoidable food
avoidance waste across the food
chain

Institute for Sustainable Futures, University of Technology Sydney

Assumptions
(impact coefficients)

Soil sequestration of carbon will
have the greatest impact in the
Land use change sector in the
Australian GHG accounts, and
minor impacts across the primary
production, as improved soils will
reduce emissions from N20
through improved efficiency of N
use

Changing crop varieties to improve
nutrient uptake will have the
greatest impact on the category of
Crop production and Fertilizer use

There will be a minor impact on
other primary production sectors

This measure will have an impact
on the Livestock sector

This measure will impact across all
the energy using sectors, where
the majority of emissions arise from
energy use, except for f-gases for
cold chain which are relatively
minor relative to energy use

The Fertilizer manufacturing and
Pesticide manufacturing sector will
have lower coefficients as they
have emissions due to the use of
fossil fuels for their chemical
properties, which are covered
under a separate measure

This measure will have the largest
impact on the Livestock sector, and
on the Crop production sector due
to feed for livestock, as well as a
lower coefficient for other sectors
e.g. as a result of reduced Fertilizer
manufacturing and cold chain
requirements in the food system

Food waste avoidance impacts
back up the entire food chain to
varying degrees, with lower
coefficients as a result of food
exports from e.g. Australia

References

Lal (2016)

Carlson et al. (2017)

Hegarty et al. (2021)

Australian Alliance for
Energy Productivity
(2017)

Xue, Q. et al. (2017)

Willett W. et al.
(2019)

FIAL (2021)
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3 Phosphorus Sub-model

The phosphorus (P) model draws on both historical and forecasted P demand values for Australia
and China, using different sources to each geography. For Australia, the demand values were
based on a model devised by Mohr, S. et al (UTS:ISF 2014), while the values for China were
inferred from the work of Jiang et al (2019). These data points provide a baseline for
understanding both current and future phosphorus usage in these countries.

The model integrates a range of sustainable P measures, categorized into Demand Measures
and Supply Measures, as defined by Cordell and White (2013). Demand measures target
reducing phosphorus demand by mitigating phosphorus use, e.g. by changing diets or improving
agricultural efficiency. Supply measures, on the other hand, focus on alternative sources of
phosphorus that do not rely on phosphate rock. For example, phosphorus can be recovered from
human excreta or agricultural waste, reducing dependency on traditional phosphate rock mining.
These categories allow for a comprehensive assessment of phosphorus supply risks, exploring
both the potential to curb demand and identify alternative, more sustainable phosphorus supply
routes.

The PACSAN model applies the same measures described in Section 1 to both the demand-side
and supply-side interventions for phosphorus in Australia and China.

3.1 Phosphorus demand forecast

The cumulative total phosphorus demand, in kilotons of phosphorus (kt of P) from 2025 to 2050
are presented in Figure 7 for Australia, and Figure 8 for China. These have been disaggregated
into phosphorus used in fertilizer for agriculture, livestock, aquaculture, and “non-food phosphorus
use”. For Australia, no values for aquaculture have been considered.

Figure 7: Cumulative demand, in kilotons of P from 2025 to 2050 in Australia, per model category
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Figure 8: Cumulative demand, in kilotons of P from 2025 to 2050 in China, per model category
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3.2 Coefficients applied

The following figures showcase the combinations of measures and demand- or supply-side
strategies, highlighting the impact coefficient values applied to these combinations.

Figure 9: Impact coefficients applied to the Australian P model

Code D-A D-B D-C D-D S-A S-B S-C S-D

Sector :z::;slz:r?r is]::izecrkfor :ZE:LSLI:?; Non-food P Crop Residue Food Waste Human Excreta |Manure

1. Renewable fertiliser - - - - 0.06 0.04 0.02 0.18
2. Nutrient productivity 0.25 0.25 - 0.10 - - - -
3. Soil carbon - - - - o = . -
4. Crop type 0.10 0.10 - 0.10 - - - =
5. Livestock feed additives - 0.03 - - - - o =
6. Energy productivity - - - > - - - -
7. Sustainable food choices |- 0.20 0.50 - - - = o -
8. Food waste avoidance 0.40 0.10 = - - - = -

Figure 10: Impact coefficients applied to the Chinese P model

Code D-A D-B D-C D-D S-A S-B S-C S-D

Sector :eritlllslfl:rz)r ts]:::)::or ;Zsia“csuel;:?; Non-food P Crop Residue Food Waste Human Excreta |Manure

1. Renewable fertiliser - - - - 0.19 0.19 0.13 0.38
2. Nutrient productivity 0.45 0.20 0.30 0.50 - - - -
3. Soil carbon - - - - - = = =
4. Crop type 0.20 0.08 0.10 0.20 - - - -

5. Livestock feed additives - 0.02 - - - - o =
6. Energy productivity - - = - - - - _
7. Sustainable food choices |- 0.20 0.40 0.10 - - - o -
8. Food waste avoidance 0.45 0.20 0.50 - - - = =

Institute for Sustainable Futures, University of Technology Sydney
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Universal assumptions:

Fisheries and aquaculture were included in the China model, but excluded from the
Australia model (due to a lack of data availability)

Phosphate rock supply is fixed at 30% of demand. This percentage is somewhat
arbitrary, and rather is indicative that we need to diversify sources of phosphorus (away
from dominant reliance on phosphate rock — especially imports - due to environmental,
economic and geopolitical risks). The actual percentage is a point for discussion. E.g.
Australia has a relatively high dependence on imports - it is currently the world’s 51" largest
importer of phosphate rock. China is the largest producer, however some estimates
indicate that domestic production is forecast to peak by 2045 (Jiang et al, 2019).

Fertiliser use for crops versus pastures has been fixed at a ratio of 37% usage on
crops and 63% usage on pastures for Australia, based on previous phosphorus flow
modelling through the Australian food system (Cordell et al, 2013). Fertiliser use for food

versus non-food has been assumed at 90% food, 10% non-food crops (cotton etc).

Table 4: Assumptions and references for P model

Measure

1. Renewable
fertiliser

2. Nutrient
productivity

3. Soil carbon
sequestration

4. Crop type

Institute for Sustainable Futures, University of Technology Sydney

Relevance for
phosphorus

Recovery and
recycling of
phosphorus from
manures, crop
waste, food waste
and sewage

On farm efficiency
of fertiliser

Smart agriculture
Tapping legacy
phosphorus, soil
testing and

mapping
N/A

Crop varieties that
maximise nutrient
use efficiency

Assumptions
(co-efficients)

All organic waste by-products are
theoretically available as raw
feedstocks to produce renewable
fertilisers. This model however
includes: crop residues, manures,
food waste, human excreta.

The availability of crop residues,
manures, food waste, excreta in kt
has been extrapolated from 2013.

The model assume that these
renewable sources meet renewable
fertiliser demand in a fixed ratio (for
simplicity, however in reality this
would be more dynamic and
dependent on many market and
technical factors).

Maximum Phosphorus Use
Efficiency (PUE) for fertiliser use has
been assumed the same for crops
and pastures, however in reality
these are different.

Soil sequestration was considered
not to have an impact, however in
reality, it is likely that improved soil
health will increase carbon
sequestration and impact on
phosphorus mobility

Efficiency gains associated with crop
types is assumed the same for all
crop types (e.g. grains vs pasture).
In reality these will differ and could
be modelled as such with future
available data.

References

Cordell et al
(2013)

As above;
Simpson et al
2011.

PACSAN Sydney
workshop expert
participant

Richardson et al
2009; Gamuyao
et al 2012;
Cornish 2009.
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Relevance for

phosphorus

5. Livestock e Phytase additives to e

feed additives maximise
phosphorus uptake

6. Energy * N/A .

productivity

across food

value chain

e © Shifting food .

food choices Consumption from
livestock to plant-
based

N oo R 8 * Reducing avoidable e
avoidance food waste across
the food chain

Institute for Sustainable Futures, University of Technology Sydney

Assumptions R
L eferences

(co-efficients)

The use of phytase reduces overall Afinah et al (2010)

phosphorus demand as a result of

improved efficiency of feed

absorption, hence reducing or

eliminating the need for P feed

additives

There is no significant impact of
improving energy productivity on
phosphorus demand or use.

Reduction in phosphorus demand Metson et al
(2012)
Reduction in phosphorus demand FIAL (2021)

back up the food value chain

13
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4 Synthesis

4.1 Cumulative GHG emissions reduction potential

The ridge plots in Figure 11 illustrate the cumulative potential for reducing greenhouse gas (GHG)
emissions through the application of various measures across different stages of the food supply
chain. These plots highlight the total potential GHG emission reduction of each measure within
both Australia and China.

Figure 11: Cumulative potential for GHG emissions reduction by measure across food supply chain
sectors in Australia and China.
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4.2 Cumulative P demand reduction, supply alternatives
and impact coefficients

The ridge plots depicted in Figure 12 illustrate strategies for reducing phosphorus demand
through measures 2 to 8 and enhancing alternative supply sources with measure 1. Specifically,
measure 1 quantifies the maximum amount of phosphorus that can be recovered, assuming no
alterations in current demand levels — meaning no demand-side measures are applied. Due to
the significant differences in scale between Australia and China, two plots with distinct Y-axes
values have been provided.

Figure 12: Cumulative potential for P demand reduction by measure across food supply chain
sectors in Australia and China. Due to the significant differences in scale between the
two countries, the plots are presented with distinct Y-axis values.
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4.3 Synthesis of measures across impact categories and
countries

To evaluate the combined potential for reducing GHG emissions and phosphorus (P) demand
through the application of each measure, we:

¢ Assumed Full Implementation Potential: Considered each measure as being applied
to its maximum feasible extent.

e Analysed Dual Impact: Assessed the impact of each measure on both GHG emissions
and P demand for Australia and China.

¢ Quantified the Distribution of Potential Reductions: Evaluated the potential impact as
a percentage within each sub-model (either GHG or P), reflecting the measure's
effectiveness in reducing emissions or demand.

The results are summarised on Table 3 and Table 4 and Figure 13.

Table 5: GHG emissions’ reduction potential and P demand reduction potential across Australia
and China - % of total

GHG Reduction Potential |P Demand Reduction Potential
Measure Australia China Australia China
1. Renewable fertiliser 0% 4% 27% 50%
2. Nutrient productivity 7% 12% 22% 18%
3. Soil carbon 10% 0% 0% 0%
4. Crop type 6% 6% 9% 8%
5. Livestock feed additives 21% 8% 2% 1%
6. Energy productivity 14% 36% 0% 0%
7. Sustainable food choices 33% 18% 23% 7%
8. Food waste awidance 9% 16% 17% 17%

Table 6: GHG emissions’ reduction potential and P demand reduction potential across Australia
and China (kt for 2025-2050)

GHG reduction potential P demand or supply
kt of CO2-eq (2025-2050) potential kt of (2025-2050)

AUSTRALIA CHINA | AUSTRALIA CHINA
1. Renewable fertiliser 34,264 B 5,818,851 3,808 | 406,552 |
2. Nutrient productivity 778,415 6,191,142 3,078 I 150,175
3. Soil carbon 1,165,724 - - -
4. Crop type 748,045 M 8,448,963 1,269 B 62,162
5. Livestock feed additives 2,395,990 1,305,670 240 | 4,325
6. Energy productivity 1,622,696 [NE48I845N80) - -
7. Sustainable food choices 3,791,365 24¥430,781 3,186 M 60,776
8. Food waste awidance 1,056,843 I2M632,173 2,424 [ 136,035
Total 11,593,342 136,673,360 14,005 820,026

Institute for Sustainable Futures, University of Technology Sydney
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Figure 13: Distribution of GHG emissions’ reduction potential and P demand reduction potential
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3 Readiness-to-implement
workshop outcomes

The following table shows the outcomes of discussions by workshop participants for the Shanghai

and Sydney workshops, related to the eight measures.

Measure

1. Renewable fertilizer

2. Nutrient
productivity

3. Soil carbon
sequestration

4. Crop type

5. Livestock feed
additives

6. Energy productivity
across food value
chain

7. Sustainable food
choices

8. Food waste
avoidance

Institute for Sustainable Futures, University of Technology Sydney

Readiness to implement

(Participant views/perspectives)

China: Emphasis on phosphorus recovery from waste and
recycling. Stakeholders mentioned phosphorus inefficiencies and
recovery from organic sources as key strategies.

Australia: Fertilizer manufacturing, especially low-emission
options, was noted, including a need for local production and
infrastructure to handle phosphorus recovery.

China: Smart agricultural practices and improving resource
efficiency, especially phosphorus use efficiency is needed.

Australia: The role of legumes in nutrient-specific crops is crucial,
and the importance of soil mapping for targeted nutrient
application necessary.

Australia: Soils as a carbon sink were highlighted, and carbon
management in soils was a priority, with a note that soil carbon
and nutrient management are interconnected.

China & Australia: No comments.

China: Livestock emissions are a key focus, with targets for
methane reduction. Potentially achieved through additives.

Australia: Emphasis on livestock emissions reductions through
feed additives and faster time to slaughter to reduce overall
emissions seem to be considered.

China & Australia: Renewable energy integration into the food
system, including improving energy productivity is a key strategy.

China: Promoted a plant-forward diet as a key solution for
reducing food-related emissions.

Australia: Discussion on shifting consumer behaviour toward
plant-based diets was highlighted as essential but challenging.

China: Addressed the need to reduce food waste at various
stages of the food system, particularly on the consumption side.

Australia: Extensive focus on reducing food waste, particularly in
households, and the role of packaging and food waste recovery
strategies.
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